Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37014118

RESUMO

Absence seizures are characterized by brief periods of unconsciousness accompanied by lapses in motor function that can occur hundreds of times throughout the day. Outside of these frequent moments of unconsciousness, approximately a third of people living with the disorder experience treatment-resistant attention impairments. Convergent evidence suggests prefrontal cortex (PFC) dysfunction may underlie attention impairments in affected patients. To examine this, we use a combination of slice physiology, fiber photometry, electrocorticography (ECoG), optogenetics, and behavior in the Scn8a+/-mouse model of absence epilepsy. Attention function was measured using a novel visual attention task where a light cue that varied in duration predicted the location of a food reward. In Scn8a+/-mice, we find altered parvalbumin interneuron (PVIN) output in the medial PFC (mPFC) in vitro and PVIN hypoactivity along with reductions in gamma power during cue presentation in vivo. This was associated with poorer attention performance in Scn8a+/-mice that could be rescued by gamma-frequency optogenetic stimulation of PVINs. This highlights cue-related PVIN activity as an important mechanism for attention and suggests PVINs may represent a therapeutic target for cognitive comorbidities in absence epilepsy.


People who experience absence seizures may go through brief lapses in consciousness hundreds of times a day. They also often have difficulties engaging and remaining focused on a task, which can severely limit their ability to study, work and go through their day-to-day life. These impairments in attention persist even when medication puts a stop to the seizures, suggesting that they are not directly linked to the epileptic episodes. In fact, recent work has indicated that these deficits may be caused instead by alterations in the activity of the prefrontal cortex, the brain area which helps to regulate attention and impulsivity. However, the exact nature of these changes remains unclear, making it difficult to design treatments that could improve patients' quality of life. To explore this question, Ferguson et al. developed a new behavioral test that allowed them to measure the attention levels of mice genetically engineered to have absence seizures. The experiments confirmed that these animals had impaired attention even when brain activity recordings showed that they were not experiencing seizures. Further work revealed that poor performance on the behavioral test was linked to decreased activity in parvalbumin interneurons, a group of cells in the prefrontal cortex which can inhibit many other types of neurons. In mutant mice, this change was associated with alterations in network activity broadly in the cortex, including in electrical patterns which are linked to cognitive processes. Promisingly, increasing the activity of the interneurons during the attention task improved performance, suggesting that this type of cell could represent a therapeutic target for attention deficit in absence epilepsy.


Assuntos
Epilepsia Tipo Ausência , Camundongos , Animais , Interneurônios/fisiologia , Convulsões , Córtex Pré-Frontal , Inconsciência , Canal de Sódio Disparado por Voltagem NAV1.6
2.
Neuropsychopharmacology ; 48(9): 1267-1276, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37041206

RESUMO

The cognitive symptoms of schizophrenia (SZ) present a significant clinical burden. They are treatment resistant and are the primary predictor of functional outcomes. Although the neural mechanisms underlying these deficits remain unclear, pathological GABAergic signaling likely plays an essential role. Perturbations with parvalbumin (PV)-expressing fast-spiking (FS) interneurons in the prefrontal cortex (PFC) are consistently found in post-mortem studies of patients with SZ, as well as in animal models. Our studies have shown decreased prefrontal synaptic inhibition and PV immunostaining, along with working memory and cognitive flexibility deficits in the MK801 model. To test the hypothesized association between PV cell perturbations and impaired cognition in SZ, we activated prefrontal PV cells by using an excitatory DREADD viral vector with a PV promoter to rescue the cognitive deficits induced by adolescent MK801 administration in female rats. We found that targeted pharmacogenetic upregulation of prefrontal PV interneuron activity can restore E/I balance and improve cognition in the MK801 model. Our findings support the hypothesis that the reduced PV cell activity levels disrupt GABA transmission, resulting in the disinhibition of excitatory pyramidal cells. This disinhibition leads to an elevated prefrontal excitation/inhibition (E/I) balance that could be causal for cognitive impairments. Our study provides novel insights into the causal role of PV cells in cognitive function and has clinical implications for understanding the pathophysiology and management of SZ.


Assuntos
Disfunção Cognitiva , Parvalbuminas , Ratos , Animais , Feminino , Parvalbuminas/metabolismo , Maleato de Dizocilpina/farmacologia , Farmacogenética , Interneurônios/fisiologia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Cognição , Córtex Pré-Frontal/metabolismo
4.
Cell ; 175(2): 472-487.e20, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30146164

RESUMO

The dorsal raphe (DR) constitutes a major serotonergic input to the forebrain and modulates diverse functions and brain states, including mood, anxiety, and sensory and motor functions. Most functional studies to date have treated DR serotonin neurons as a single population. Using viral-genetic methods, we found that subcortical- and cortical-projecting serotonin neurons have distinct cell-body distributions within the DR and differentially co-express a vesicular glutamate transporter. Further, amygdala- and frontal-cortex-projecting DR serotonin neurons have largely complementary whole-brain collateralization patterns, receive biased inputs from presynaptic partners, and exhibit opposite responses to aversive stimuli. Gain- and loss-of-function experiments suggest that amygdala-projecting DR serotonin neurons promote anxiety-like behavior, whereas frontal-cortex-projecting neurons promote active coping in the face of challenge. These results provide compelling evidence that the DR serotonin system contains parallel sub-systems that differ in input and output connectivity, physiological response properties, and behavioral functions.


Assuntos
Núcleo Dorsal da Rafe/anatomia & histologia , Núcleo Dorsal da Rafe/fisiologia , Serotonina/fisiologia , Adaptação Psicológica/fisiologia , Tonsila do Cerebelo/fisiologia , Animais , Ansiedade/fisiopatologia , Encéfalo/fisiologia , Núcleo Dorsal da Rafe/metabolismo , Feminino , Lobo Frontal/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Serotonina/metabolismo
5.
Front Neural Circuits ; 12: 37, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867371

RESUMO

Elucidating the prefrontal cortical microcircuit has been challenging, given its role in multiple complex behaviors, including working memory, cognitive flexibility, attention, social interaction and emotional regulation. Additionally, previous methodological limitations made it difficult to parse out the contribution of certain neuronal subpopulations in refining cortical representations. However, growing evidence supports a fundamental role of fast-spiking parvalbumin (PV) GABAergic interneurons in regulating pyramidal neuron activity to drive appropriate behavioral responses. Further, their function is heavily diminished in the prefrontal cortex (PFC) in numerous psychiatric diseases, including schizophrenia and autism. Previous research has demonstrated the importance of the optimal balance of excitation and inhibition (E/I) in cortical circuits in maintaining the efficiency of cortical information processing. Although we are still unraveling the mechanisms of information representation in the PFC, the E/I balance seems to be crucial, as pharmacological, chemogenetic and optogenetic approaches for disrupting E/I balance induce impairments in a range of PFC-dependent behaviors. In this review, we will explore two key hypotheses. First, PV interneurons are powerful regulators of E/I balance in the PFC, and help optimize the representation and processing of supramodal information in PFC. Second, diminishing the function of PV interneurons is sufficient to generate an elaborate symptom sequelae corresponding to those observed in a range of psychiatric diseases. Then, using this framework, we will speculate on whether this circuitry could represent a platform for the development of therapeutic interventions in disorders of PFC function.


Assuntos
Interneurônios/fisiologia , Transtornos Mentais/fisiopatologia , Rede Nervosa/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Animais , Humanos , Memória de Curto Prazo/fisiologia , Rede Nervosa/fisiologia , Córtex Pré-Frontal/fisiologia , Transmissão Sináptica/fisiologia
6.
Front Cell Neurosci ; 12: 16, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29449801

RESUMO

Glycogen synthase kinase 3ß (GSK3ß) is a highly conserved serine/threonine kinase that has been implicated in both psychiatric and neurodegenerative diseases including schizophrenia, bipolar disorder, and Alzheimer's disease; therefore regulating its activity has become an important strategy for treatment of cognitive impairments in these disorders. This study examines the effects of lithium on GSK3ß and its interaction with ß-catenin and NMDA receptors within the prefrontal cortex. Lithium, a clinically relevant drug commonly prescribed as a mood stabilizer for psychiatric disorders, significantly increased levels of phosphorylated GSK3ß serine 9, an inhibitory phosphorylation site, and decreased ß-catenin ser33/37/thr41 phosphorylation in vitro, indicating GSK3ß inhibition and reduced ß-catenin degradation. GluN2A subunit levels were concurrently increased following lithium treatment. Similar alterations were also demonstrated in vivo; lithium administration increased GSK3ß serine 9 phosphorylation and GluN2A levels, suggesting a reduced GSK3ß activity and augmented GluN2A expression. Correspondingly, we observed that the amplitudes of evoked GluN2A-mediated excitatory postsynaptic currents in mPFC pyramidal neurons were significantly increased following lithium administration. Our data suggest that GSK3ß activity negatively regulates GluN2A expression, likely by mediating upstream ß-catenin phosphorylation, in prefrontal cortical neurons. Furthermore, our biochemical and electrophysiological experiments demonstrate that lithium mediates a specific increase in GluN2A subunit expression, ultimately augmenting GluN2A-mediated currents in the prefrontal cortex.

7.
Biol Psychiatry ; 83(8): 657-669, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29373121

RESUMO

BACKGROUND: The mediodorsal thalamus plays a critical role in cognition through its extensive innervation of the medial prefrontal cortex (mPFC), but how the two structures cooperate at the single-cell level to generate associated cognitive functions and other mPFC-dependent behaviors remains elusive. Maintaining the proper balance between excitation and inhibition (E/I balance) is of principal importance for organizing cortical activity. Furthermore, the PFC E/I balance has been implicated in successful execution of multiple PFC-dependent behaviors in both animal research and the context of human psychiatric disorders. METHODS: Here, we used a pharmacogenetic strategy to decrease mediodorsal thalamic activity in adult male rats and evaluated the consequences for E/I balance in PFC pyramidal neurons as well as cognition, social interaction, and anxiety. RESULTS: We found that dampening mediodorsal thalamic activity caused significant reductions in gamma-aminobutyric acidergic signaling and increased E/I balance in the mPFC and was concomitant with abnormalities in these behaviors. Furthermore, by selectively activating parvalbumin interneurons in the mPFC with a novel pharmacogenetic approach, we restored gamma-aminobutyric acidergic signaling and E/I balance as well as ameliorated all behavioral impairments. CONCLUSIONS: These findings underscore the importance of thalamocortical activation of mPFC gamma-aminobutyric acidergic interneurons in a broad range of mPFC-dependent behaviors. Furthermore, they highlight this circuitry as a platform for therapeutic investigation in psychiatric diseases that involve impairments in PFC-dependent behaviors.


Assuntos
Comportamento Animal/fisiologia , Cognição/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , GABAérgicos/farmacologia , Neurônios GABAérgicos/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Interneurônios/fisiologia , Núcleo Mediodorsal do Tálamo/fisiologia , Córtex Pré-Frontal/fisiologia , Transdução de Sinais/fisiologia , Comportamento Social , Ácido gama-Aminobutírico/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Neurônios GABAérgicos/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Masculino , Núcleo Mediodorsal do Tálamo/efeitos dos fármacos , Técnicas de Patch-Clamp , Farmacogenética , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
8.
Neurobiol Learn Mem ; 140: 52-61, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28213064

RESUMO

Schizophrenia (SCZ) is a neurodevelopmental psychiatric disorder, in which cognitive function becomes disrupted at early stages of the disease. Although the mechanisms underlying cognitive impairments remain unclear, N-methyl-D-aspartate receptors (NMDAR) hypofunctioning in the prefrontal cortex (PFC) has been implicated. Moreover, cognitive symptoms in SCZ are usually unresponsive to treatment with current antipsychotics and by onset, disruption of the dopamine system, not NMDAR hypofunctioning, dominates the symptoms. Therefore, treating cognitive deficits at an early stage is a realistic approach. In this study, we tested whether an early treatment targeting mGluR2 would be effective in ameliorating cognitive impairments in the methylazoxymethanol acetate (MAM) model of SCZ. We investigated the effects of an mGluR2 agonist/mGluR3 antagonist, LY395756 (LY39), on the NMDAR expression and function in juveniles, as well as cognitive deficits in adult rats after juvenile treatment. We found that gestational MAM exposure induced a significant decrease in total protein levels of the NMDAR subunit, NR2B, and a significant increase of pNR2BTyr1472 in the juvenile rat PFC. Treatment with LY39 in juvenile MAM-exposed rats effectively recovered the disrupted NMDAR expression. Furthermore, a subchronic LY39 treatment in juvenile MAM-exposed rats also alleviated the learning deficits and cognitive flexibility impairments when tested with a cross-maze based set-shifting task in adults. Therefore, our study demonstrates that targeting dysfunctional NMDARs with an mGluR2 agonist during the early stage of SCZ could be an effective strategy in preventing the development and progression in addition to ameliorating cognitive impairments of SCZ.


Assuntos
Aminoácidos Dicarboxílicos/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Cognição/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/agonistas , Esquizofrenia/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/metabolismo , Modelos Animais de Doenças , Acetato de Metilazoximetanol , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/induzido quimicamente
9.
Exp Neurol ; 273: 190-201, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26341392

RESUMO

Targeting group II metabotropic glutamate receptors (mGluR2/3) has been proposed to correct the dysfunctional glutamatergic system, particularly NMDA receptor (NMDAR) hypofunction, for treatment of schizophrenia. However, how activation of mGluR2/3 affects NMDAR function in adult animals remains elusive. Here we show the effects of LY395756 (LY39), a compound acting as both an mGluR2 agonist and mGluR3 antagonist, on the NMDAR expression and function of normal adult rat prefrontal cortex (PFC) as well as working memory function in the MK801 model of schizophrenia. We found that in vivo administration of LY39 significantly increased the total protein levels of NMDAR subunits and NR2B phosphorylationin the PFC, along with the amplitude of NMDAR-mediated miniature excitatory postsynaptic currents (mEPSC) in the prefrontal cortical neurons. Moreover, LY39 also significantly increased mTOR and pmTOR expression, but not ERK1/2, Akt, and GSK3ß, suggesting an activation of mTOR signaling. Indeed, the mTOR inhibitor rapamycin, and actinomycin-D, a transcription inhibitor, blocked the enhanced effects of LY39 on NMDAR-mEPSCs. These results indicate that LY39 regulates NMDAR expression and function through unidentified mTOR-mediated protein synthesis in the normal adult rat PFC. However, this change is insufficient to affect working memory function in normal animals, nor to reverse the MK801-induced working memory deficit. Our data provide the first evidence of an in vivo effect of a novel compound that acts as both an mGluR2 agonist and mGluR3 antagonist on synaptic NMDAR expression and function in the adult rat PFC, although its effect -on PFC-dependent cognitive function remains to be explored.


Assuntos
Aminoácidos Dicarboxílicos/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Memória de Curto Prazo/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Atenção/efeitos dos fármacos , Maleato de Dizocilpina/toxicidade , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Imunossupressores/farmacologia , Técnicas In Vitro , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Técnicas de Patch-Clamp , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Sirolimo/farmacologia , Membranas Sinápticas/efeitos dos fármacos , Membranas Sinápticas/metabolismo , Potenciais Sinápticos/efeitos dos fármacos
10.
Front Hum Neurosci ; 8: 1027, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25620923

RESUMO

The mediodorsal thalamus (MD) represents a fundamental subcortical relay to the prefrontal cortex (PFC), and is thought to be highly implicated in modulation of cognitive performance. Additionally, it undergoes highly conserved developmental stages, which, when dysregulated, can have detrimental consequences. Embryonically, the MD experiences a tremendous surge in neurogenesis and differentiation, and disruption of this process may underlie the pathology in certain neurodevelopmental disorders. However, during the postnatal period, a vast amount of cell loss in the MD occurs. These together may represent an extended critical period for postnatal development, in which disturbances in the normal growth or reduction of the MD afferents to the PFC, can result in PFC-dependent cognitive, affective, or psychotic abnormalities. In this review, we explore the current knowledge supporting this hypothesis of a protracted critical period, and propose how developmental changes in the MD contribute to successful prefrontal cortical development and function. Specifically, we elaborate on the unique properties of MD-PFC connections compared with other thalamocortical afferents in sensory cortices, examine how MD-PFC innervation modulates synaptic transmission in the local prefrontal circuitry, and speculate on what occurs during postnatal development, particularly within the early neonatal stage, as well as juvenile and adolescent periods. Finally, we discuss the questions that remain and propose future experiments in order to provide perspective and novel insights into the cause of neuropsychiatric disorders associated with MD-PFC development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...